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Clmlng ah
Infinite Ladder

Suppose we have an infinite ladder:

1. We can reach the first rung of the ladder.

2. Ifwe can reach a particular rung of the ladder, then we
can reach the next rung.

From (1), we can reach the first rung. Then by
applying (2), we can reach the second rung.
Applying (2) again, the third rung. And so on.
We can apply (2) any number of times to reach
any particular rung, no matter how high up.

This example motivates proof by
mathematical induction.



Principle of Mathematical Induction

Principle of Mathematical Induction: To prove that P(n) is true for all
positive integers n, we complete these steps:

* Basis Step: Show that P(1) is true.

e Inductive Step: Show that P(k) - P(k + 1) is true for all positive
integers k.

To complete the inductive step, assuming the inductive hypothesis
that P(k) holds for an arbitrary integer k, show that must P(k + 1) be
true.

Climbing an Infinite Ladder Example:
» BASIS STEP: By (1), we can reach rung 1.

e INDUCTIVE STEP: Assume the inductive hypothesis that we can reach
rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) — P(k + 1) is true for all positive integers k. We can reach
every rung on the ladder.



Important Points About Using
Mathematical Induction

Mathematical induction can be expressed as the
rule of inference

(P(1) AVk (P(k) - P(k+ 1))) » Vn P(n),
where the domain is the set of positive integers.

In a proof by mathematical induction, we don’t
assume that P(k) is true for all positive integers! We
show that if we assume that P(k) is true, then

P(k + 1) must also be true.

Proofs by mathematical induction do not always
start at t¥1e integer 1. In such a case, the basis step
begins at a starting point b where b is an integer.
We will see examples of this soon.



Validity of Mathematical Induction

Mathematical induction is valid because of the well ordering property, which
states that every nonempty subset of the set of positive integers has a least
element (see Section 5.2 and Appendix 1). Here is the proof:

ISuppose that P(1) holds and P(k) — P(k + 1) is true for all positive integers
k.

Assume there is at least one positive integer n for which P(n) is false.
Then the set S of positive integers for which P(n) is false is nonempty.

By the well-ordering property, S has a least element, say m.
We know that m can not be 1 since P(1) holds.

Since m is positive and greater than 1, m — 1 must be a positive integer.
Sincem -1 <m,itisnotin§, so P(m — 1) must be true.

But then, since the conditional P(k) = P(k + 1) for every positive integer k
holds, P(m) must also be true. This contradicts P(m) being false.

Hence, P(n) must be true for every positive integer n.
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Remembering How Mathematical
Induction Works

Consider an infinite
sequence of dominoes,
labeled 1,2,3, ..., where
each domino is standing.

We know that the first domino
is knocked down, i.e., P(1) is
true .

We also know that if whenever
the kth domino is knocked over,
it knocks over the (k + 1)st
domino, i.e, P(k) - P(k + 1) is
true for all positive integers k.

Let P(n) be the
proposition that the
nth domino is
knocked over.

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.
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Proving a Summation Formula by
Mathematical Induction

n
nin—+1 Note: Once we have this
ExamPIE: ShOW that: Z o ( 9 ) conjecture, mathematical
2 Sy induction can be used to
SOlutlon: prove it correct.

o BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.
o INDUCTIVE STEP: Assume true for P(k)

The inductive hypothesis is Z e 2+ L

Under this assumption,

P
L2 5 oep D

+(k+1)
_ E(k+ D) +2(k+1)
2
_ (k+D(k+2) -
2
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Conjectu ringa\nd Proving Correct a
Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n positive odd integers.
Then prove your conjecture.

Solution: We have: 1=1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+ 9 =25.
* We can conjecture that the sum of the first n positive odd integers is n?,

1+3+54++2n —-1)+ (2n+1) =n?.
*  We prove the conjecture is proved correct with mathematical induction.
e BASIS STEP: P(1) is true since 1% = 1.
e INDUCTIVE STEP: P(k) — P(k + 1) for every positive integer k.
Assume the inductive hypothesis holds and then show that P(k) holds has well.

Inductive Hypothesis: 1 + 3 + 5 + -+ (2k — 1) =k?

e So, assuming P(k), it follows that:

1434+5++QRk -1+ Q@Rk+1)=[1+43+5++R2k — 1]+ 2k+1)
= k?+ (2k + 1) (by the inductive hypothesis)
=k’+2k+1
=(k+1)?

e Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n positive odd
integers is n?. |



Proving Inequalities

Example: Use mathematical induction to prove that
n < 2" for all positive integers n.
Solution: Let P(n) be the proposition that n < 2™,
e BASIS STEP: P(1) is true since 1 < 21 = 2.

o INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for
an arbitrary positive integer k.

e Must show that P(k + 1) holds. Since by the inductive
hypothesis, k < 2, it follows that:

k_|_ 1<2’<+1 sZk +2k =2,2k =2k+1
Therefore n < 2" holds for all positive integers n. <



Proving Inequalities

Example: Use mathematical induction to prove that 2" <
n!, for every integer n = 4.
Solution: Let P(n) be the proposition that 2" < n!.

o BASIS STEP: P(4) is true since 24 =16 < 4! = 24,

o INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an
arbitrary integer k = 4. To show that P(k + 1) holds:

2k+1 _ 2.9k
< 2- k! (by the inductive hypothesis)
< (k+ 1)k!
=(k+1)!
Therefore, 2" < n! holds, for every integer n = 4. |

Note that here the basis step is P(4), since P(0), P(1), P(2), and P(3) are all

false.



Proving Divisibility Results

Example: Use mathematical induction to prove that n® —n is
divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n® — n is divisible by
3

o BASIS STEP: P(1) is true since 13 — 1 = 0, which is divisible by 3.
e INDUCTIVE STEP: Assume P(k) holds, i.e., k3 — k is divisible by 3,
for an arbitrary positive integer k. To show that P(k + 1) follows:
(k+1)3 —(k+1)=(k3+3k*+3k+1) —(k+1)
= (k3 — k) + 3(k?+ k)
By the inductive hypothesis, the first term (k3 — k) is divisible by 3
and the second term is divisible by 3 since it is an integer

multiplied by 3. So by part (i) of Theorem 1 in Section 4.1, (k + 1)3
— (k + 1) is divisible by 3.

Therefore, n3 — n is divisible by 3, for every integer positive integer n. <



Number of Subsets of a Finite Set

Example: Use mathematical induction to show that if
S is a finite set with n elements, where n is a

nonnegative integer, then S has 2" subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n
elements has 2" subsets.

» Basis Step: P(0) is true, because the empty set has only
itself as a subset and 2° = 1.

e Inductive Step: Assume P(k) is true for an arbitrary
nonnegative integer k.

continued —



Number of Subsets of a Finite Set

Inductive Hypothesis: For an arbitrary nonnegative integer k,
every set with k elements has 2 subsets.

Let T be a set with k + 1 elements. Then T =S U {a}, wherea € T
and S=T —{a}. Hence |T| =k.

For each subset X of S, there are exactly two subsets of T, i.e., X and

X U {a}.
),

By the inductive hypothesis S has 2¥subsets. Since there are two

sub]sets lOfl T for each subset of S, the number of subsets of T is
2 2 Ca 2 K+
; <4



Tiling Checkerboards

Example: Show that every 2" x2" checkerboard with one square removed can
be tiled using right triominoes.

A right triomino is an L-shaped tile which covers
three squares at a time.

Solution: Let P(n) be the proposition that every 2" x2" checkerboard with
one square removed can be tiled using right triominoes. Use mathematical
induction to prove that P(n) is true for all positive integers n.

o BASIS STEP: P(1) is true, because each of the four 2 x2 checkerboards with
one square removed can be tiled using one right triomino.

e INDUCTIVE STEP: Assume that P(k) is true for every 2k x2k checkerboard,
for some positive integer k.

continued —



Tiling Checkerboards

Inductive Hypothesis: Every 2k x2k checkerboard, for some
positive integer k, with one square removed can be tiled using
right triominoes.

Consider a 2%+ x2k1 checkerboard with one square removed. Split this checkerboard into four
checkerboards of size 2k x2% by dividing it in half in both directions.

Remove a square from one of the four 2k x2k checkerboards. By the inductive hypothesis, this board
can be tiled. Also by the inductive hypothesis, the other three boards can be ti?led with the square
from the corner of the center of the original board removed. We can then cover the three adjacent
squares with a triominoe.

Hence, the entire 2k*! x2k+1 checkerboard with one square removed can be tiled using right
triominoes.

<



An Incorrect “Proof” by
Mathematical Induction

Example: Let P(n) be the statement that every set of n lines in
the plane, no two of which are parallel, meet in a common
point. Here is a “proof” that P(n) is true for all positive integers
n=2.

e BASIS STEP: The statement P(2) is true because any two lines in
the plane that are not parallel meet in a common point.

e INDUCTIVE STEP: The inductive hypothesis is the statement that
P(k) is true for the positive integer k > 2, i.e., every set of k lines in
the plane, no two of which are parallel, meet in a common point.

e We must show that if P(k) holds, then P(k + 1) holds, i.e., if every

set of k lines in the plane, no two of which are parallel, k > 2, meet
in a common point, then every set of k + 1 lines in the plane, no
two of which are parallel, meet in a common point.

continued —



An Incorrect “Proof” by
Mathematical Induction

Inductive Hypothesis: Every set of k lines in the plane, where
k = 2, no two of which are parallel, meet in a common point.

e Consider a set of k + 1 distinct lines in the plane, no two parallel. By the
inductive hypothesis, the first k of these lines must meet in a common point
p;- By the inductive hypothesis, the last k of these lines meet in a common
point p,.

e Ifp; and p, are different points, all lines containing both of them must be the
same line since two points determine a line. This contradicts the assumption
that the lines are distinct. Hence, p, = p, lies on all k + 1 distinct lines, and
therefore P(k + 1) holds. Assuming that k >2, distinct lines meet in a common
point, then every k + 1 lines meet in a common point.

e There must be an error in this proof since the conclusion is absurd. But where is
the error?
Answer: P(k)— P(k + 1) only holds for k >3. It is not the case that P(2) implies P(3).
The first two lines must meet in a common point p, and the second two must meet in

a common point p,. They do not have to be the same point since only the second line
is common to both sets of lines.



Guidelines:

Mathematical Induction Proofs

Template for Proofs by Mathematical Induction

L

=

Express the statement that is to be proved in the form “for all n > b, P(n)” for a fixed
integer b.

Write out the words “Basis Step.” Then show that P (b) is true, taking care that the correct
value of b is used. This completes the first part of the proof.

Write out the words “Inductive Step.”

State, and clearly identify, the inductive hypothesis, in the form “assume that P (k) is true
for an arbitrary fixed integer k > b.”

. State what needs to be proved under the assumption that the inductive hypothesis is true.

That is, write out what P(k + 1) says.

Prove the statement P (k + 1) making use the assumption P (k). Be sure that your proof
is valid for all integers k with k > b, taking care that the proof works for small values
of k, including k = b.

Clearly identify the conclusion of the inductive step, such as by saying “this completes
the inductive step.”

. After completing the basis step and the inductive step, state the conclusion, namely that

by mathematical induction, P (n) is true for all integers n with n > b.



Strong Induction

Strong Induction: To prove that P(n) is true for all
positive integers n, where P(n) is a propositional
function, complete two steps:

* Basis Step: Verify that the proposition P(1) is true.

e Inductive Step: Show the conditional statement
[P(1) A P(2) A= A P(k)] = P(k + 1) holds for all positive
integers k.

Strong Induction is sometimes called
the second principle of mathematical
induction or complete induction.
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Strong Induction and
the Infinite Ladder

Strong induction tells us that we can reach all rungs if:

1. We can reach the first rung of the ladder.

2. For every integer k, if we can reach the first k rungs, then
we can reach the (k + 1)st rung.

To conclude that we can reach every rung by strong
induction:
« BASIS STEP: P(1) holds
« INDUCTIVE STEP: Assume P(1) A P(2) A+ A P(k)
holds for an arbitrary integer k, and show that
P(k + 1) must also hold.
We will have then shown by strong induction that
for every positive integer n, P(n) holds, i.e., we can' «n
reach the nth rung of the ladder. o



Proof using Strong Induction

Example: Suppose we can reach the first and second rungs
of an infinite ladder, and we know that if we can reach a
rung, then we can reach two rungs higher. Prove that we
can reach every rung.

(Try this with mathematical induction.)

Solution: Prove the result using strong induction.
e BASIS STEP: We can reach the first step.

e INDUCTIVE STEP: The inductive hypothesis is that we can

reach the first k rungs, for any k > 2. We can reach the
(k + 1)st rung since we can reach the (k — 1)st rung by the
inductive hypothesis.

e Hence, we can reach all rungs of the ladder. <



WhEh Form of Induction Should Be
Used?

We can always use strong induction instead of
mathematical induction. But there is no reason to use
it if it is simpler to use mathematical induction.

In fact, the principles of mathematical induction,
strong induction, and the well-ordering property are
all equivalent.

Sometimes it is clear how to proceed using one of the
three methods, but not the other two.



Com/pletion of the proof of the
Fundamental Theorem of Arithmetic

Example: Show that if n is an integer greater than 1, then n can be
written as the product of primes.

Solution: Let P(n) be the proposition that n can be written as a
product of primes.

e BASIS STEP: P(2) is true since 2 itself is prime.

e INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all
integers j with 2 <j < k. To show tﬁat P(k + 1) must be true under
this assumption, two cases need to be considered:

If k + 1 is prime, then P(k + 1) is true.

Otherwise, k + 1 is composite and can be written as the product of two positive
integers a and b with 2 < a < b < k + 1. By the inductive hypothesis a and b can
be written as the product of primes and therefore k + 1 can also be written as the
product of those primes.

Hence, it has been shown that every integer greater than 1 can be
written as the product of primes. <




Proof using Strong Induction

Example: Prove that every amount of postage of 12 cents or more can
be formed using just 4-cent and 5-cent stamps.

Solution: Let P(n) be the proposition that postage of n cents can be
formed using 4-cent and 5-cent stamps.

e BASIS STEP: P(12), P(13), P(14), and P(15) hold.

P(12) uses three 4-cent stamps.
P(13) uses two 4-cent stamps and one 5-cent stamp.
P(14) uses one 4-cent stamp and two 5-cent stamps.
P(15) uses three 5-cent stamps.

o INDUCTIVE STEP: The inductive hypothesis states that P(j) holds for
12 <j < k, where k = 15. Assuming the inductive hypothesis, it can be

shown that P(k + 1) holds.

e Using the inductive hypothesis, P(k — 3) holds since k — 3 = 12. To
form postage of k + 1 cents, add a 4-cent stamp to the postage for k —
3 cents.

Hence, P(n) holds for all n > 12. <



e

Proof of Same Example using
Mathematical Induction

Example: Prove that every amount of postage of 12 cents or
more can be formed using just 4-cent and 5-cent stamps.

Solution: Let P(n) be the proposition that postage of n cents can
be formed using 4-cent and 5-cent stamps.

e BASIS STEP: Postage of 12 cents can be formed using three 4-cent
stamps.

e INDUCTIVE STEP: The inductive hypothesis P(k) for any positive
integer k is that postage of k cents can be formed using 4-cent and
5-cent stamps. To show P(k + 1) where k = 12, we consider two
cases:

If at least one 4-cent stamp has been used, then a 4-cent stamp can be
replaced with a 5-cent stamp to yield a total of k + 1 cents.

Otherwise, no 4-cent stamp have been used and at least three 5-cent
stamps were used. Three 5-cent stamps can be replaced by four 4-cent
stamps to yield a total of k + 1 cents.

Hence, P(n) holds for all n > 12. |



Well-Ordering Property

Example: Use the well-ordering property to prove the
division algorithm, which states that if a is an integer and
d is a positive integer, then there are unique integers g and
rwith 0 <r<d, suchthat a=dq+r.

Solution: Let S be the set of nonnegative integers of the
form a — dg, where g is an integer. The set is nonempty
since —dgq can be made as large as needed.

e By the well-ordering property, S has a least element

r = a — dq, The integer r is nonnegative. It also must be the
case that r < d. If it were not, then there would be a smaller

nonnegative element in S, namely,
a—d(g,+1)=a—-dq,—d=r—d >0.
e Therefore, there are integers g and r with 0 = r < d. <4



Recursively Defined Functions

Definition: A recursive or inductive definition of a
function consists of two steps.
e BASIS STEP: Specity the value of the function at zero.

e RECURSIVE STEP: Give a rule for finding its value at an
integer from its values at smaller integers.

A function f{n) is the same as a sequence a,, a, ...,
where a;, where f{i) = a,. This was done using
recurrence relations in Section 2.4.



Recursively Defined Functions

Example: Suppose fis defined by:

fl0) =3,

fln+1)=2fn)+3
Find f(1), 2), Ai3), A4)
Solution:

fl1)=2f0)+3=23+3=9
f2) =2f1)+3=29+3=21
f(3) =2f(2) +3 =221+ 3 =45
f(4) =2f(3) + 3 =245+ 3 =93

Example: Give a recursive definition of the factorial function n!:
Solution:

flo)y=1
fin+1)=(n+ 1) f(n)
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Recursively Defined Functions

Example: Give a recursive definition of:
n
> s
k=0

Solution: The first part of the definition is

0

E ar — Q.

k=0
The second part is

n+1 n
E Gl — ar | + an1.
k=0 k=0



(1170- 1250)

Fibonacci @

Fibonacci Numbers

Example : The Fibonacci numbers are defined as

follows:

et

=1

e

Find f,, f5, f4, f=.
L=l v =130=1
el a2
L=t -2+1=3
L= s =342-5

In Chapter 8, we will use the
Fibonacci numbers to model
population growth of rabbits.
This was an application
described by Fibonacci himself.

Next, we use strong induction
to prove a result about the
Fibonacci numbers.




Fibonacci Numbers

Example 4: Show that whenever n > 3, f, > a"~2, where a= (1 +V5)/2.

Solution: Let P(n) be the statement f, > a”2. Use strong induction to show
that P(n) is true whenever n > 3.

e BASIS STEP: P(3) holds since a < 2 = f;
P(4) holds since a2 = (3 +V5)/2<3=F, .
e INDUCTIVE STEP: Assume that P(j) holds, i.e., f; > o/~ for all integers j with

3 <j < k, where k > 4. Show that P(k + 1) holds, i.e.,, fi,; > ok 1.
Since a? = a + 1 (because a is a solution of x2 — x — 1 =0),

By the inductive hypothesis, because k > 4 we have

=0t e tlan
Therefore, it follows that

ﬁ<+1 - ﬁ<+1 +ﬁ<—1 > (xk—Z + ak_3 = (Xk_l.

Hence, P(k + 1) is true.



Lamé’s Theorem

Gabriel Lamé
(1795-1870)

Lamé’s Theorem: Let a and b be positive integers with a = b. Then the

number of divisions used by the Euclidian algorithm to find gcd(a,b) is less
than or equal to five times the number of decimal digits in b.

Proof: When we use the Euclidian algorithm to find gcd(a,b) with a = b,

* n divisions are used to obtain
(with a = ry,b =r, ):

0<r,<ry,
0<r;<r,,

'on =Tr1q;+71;
ry =Tryq;+T3

rn-2 7 rn-lqn-l A rn O S rn < rn-l’

rn-l % rnqn'

* Since each quotient q, q,, ...q,,¢ 1S
atleast1and g, > 2:

r, =1=f,
a2 >2f2 f3
e e

rp2 I+ Ty 2 it
b=rizr+r,2 fi+fi1=fa

continued —



Lamé’s Theorem

[t follows that if n divisions are used by the Euclidian algorithm to find
gcd(a,b) witha = b, thenb > f, ;. By Example 4, f, ., >a" 1, forn> 2,
where a=(1++5)/2. Therefore, b > o1,

Because log,, a = 0.208 > 1/5, log,, b > (n—1) log,, & > (n—1)/5 . Hence,

n—1 <5 -log,, b.

Suppose that b has k decimal digits. Then b < 10 and log,, b < k. It follows
that n — 1 < 5k and since k is an integer, n < 5k. <4

As a consequence of Lamé’s Theorem, O(log b) divisions are used by the
Euclidian algorithm to find gcd(a,b) whenever a > b.
e By Lamé’s Theorem, the number of divisions needed to find gcd(a,b) with a > b
is less than or equal to 5 (log;, b + 1) since the number of decimal digits in b
(which equals |log,, b] + 1) is less than or equal to log,, b + 1.

Lamé’s Theorem was the first result in computational complexity




Recursively Defined Sets and Structures

Recursive definitions of sets have two parts:
e The basis step specifies an initial collection of elements.
e The recursive step gives the rules for forming new elements
in the set from those already known to be in the set.

Sometimes the recursive definition has an exclusion rule,
which specifies that the set contains nothing other than

those elements specified in the basis step and generated

by applications of the rules in the recursive step.

We will always assume that the exclusion rule holds, even
if it is not explicitly mentioned.

We will later develop a form of induction, called structural
induction, to prove results about recursively defined sets.



Recursively Defined Sets and Structures

Example : Subset of Integers S:
BASIS STEP:3 € 5.
RECURSIVE STEP: If xe Sand y € S, then x + y is in S.
Initially 3isin S, then 3 + 3=6,then 3 + 6 =9, etc.
Example: The natural numbers N.

BASIS STEP: 0 € N.
RECURSIVE STEP: If nisin N, then n+ 1 is in N.

Initially O isin S, then 0 + 1 =1, then 1 + 1 = 2, etc.



"
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Well-Formed Formulae in Propositional
Logic

Definition: The set of well-formed formulae in
propositional logic involving T, F, propositional
variables, and operators from the set {—,A,V,—,<}.
BASIS STEP: T,F, and s, where s is a propositional
variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae,

then (= E), (EAF),(EVEF), (E—F), (Ee F), are well-
formed formulae.

Examples: ((p Vg) = (g A F)) is a well-formed
formula.

pq A is not a well formed formula.



Induction and Recursively Defined Sets

Example: Show that the set S defined by Sf)ecifying that 3 € Sand thatifx € S
and ye€ S, thenx+yisinS§, is the set of all positive integers that are
multiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that
A =S, show that A is a subset of S and S is a subset of A.

e Ac S: Let P(n) be the statement that 3n belongs to S.
BASIS STEP: 3-1 = 3 € S, by the first part of recursive definition.

INDUCTIVE STEP: Assume P(k) is true. By the second part of the recursive definition,
if 3k € S, then since 3 €S, 3k + 3=3(k+ 1) € S. Hence, P(k + 1) is true.

S
BASIS STEP: 3 € S by the first part of recursive definition, and 3 = 3-1.
INDUCTIVE STEP: The second part of the recursive definition adds x +y to S, if both x
and y are in S. If x and y are both in A, then both x and y are divisible by 3. By part (i)
of Theorem 1 of Section 4.1, it follows that x + y is divisible by 3.
We used mathematical induction to prove a result about a recursively defined
set. Next we study a more direct form induction for proving results about
recursively defined sets.



Structural Induction

Definition: To prove a property of the elements of a
recursively defined set, we use structural induction.

BASIS STEP: Show that the result holds for all elements
specified in the basis step of the recursive definition.

RECURSIVE STEP: Show that if the statement is true for
each of the elements used to construct new elements in
the recursive step of the definition, the result holds for
these new elements.

The validity of structural induction can be shown to
follow from the principle of mathematical induction.



Recursive Algorithms

Definition: An algorithm is called recursive if it solves

a problem by reducing it to an instance of the same
problem with smaller input.

For the algorithm to terminate, the instance of the

problem must eventually be reduced to some initial
case for which the solution is known.




Recursive Factorial Algorithm

Example: Give a recursive algorithm for computing
n!, where n is a nonnegative integer.

Solution: Use the recursive definition of the factorial
function.

procedure factorial(n: nonnegative integer)
if n=0thenreturn 1

else returnn+«(n —1)

{output is n!}




Recursive Exponentiation Algorithm

Example: Give a recursive algorithm for computing
a”, where a is a nonzero real number and nis a
nonnegative integer.

Solution: Use the recursive definition of a”.

procedure power(a: nonzero real number, n: nonnegative
integer)

if n = 0 then return 1
else return a-power (a, n — 1)
{output is a"}




Recursive GCD Algorithm

Example: Give a recursive algorithm for computing
the greatest common divisor of two nonnegative
integers a and b with a < b.

Solution: Use the reduction
gcd(a,b) = gcd(b mod q, a)
and the condition gcd(0,b) = b when b > 0.

procedure gcd(a,b: nonnegative integers

with a < b)
if a = 0 then return b

else return gcd (b mod aq, a)
{output is gcd(a, b)}
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Recursive Modular Exponentiation
Algorithm

Example: Devise a a recursive algorithm for
computing b" mod m, where b, n, and m are
integers with m>2, n>0,and 1< b < m.

Solution: (see text for full explanation)

procedure mpower(b,m,n: integers with b >0and m =2, n>0)
if n = 0 then

return 1
else if nis even then

return mpower(b,n/2,m)?> mod m
else

return (mpower(b,|n/2],m)?> mod m-bmod m) mod m
{output is b” mod m}




Proving Recursive Algorithms Correct

Both mathematical and strong induction are useful techniques to show that recursive
algorithms always produce the correct output.

Example: Prove that the algorithm for computing the powers of real numbers is correct.

procedure power(a: nonzero real number, n: nonnegative integer)
if n =0 thenreturn 1
else return a-power (a, n — 1)

{output is a"}

Solution: Use mathematical induction on the exponent n.

BASIS STEP: a° =1 for every nonzero real number a, and power(a,0) = 1.

INDUCTIVE STEP: The inductive hypothesis is that power(a,k) = a¥, for all a #0.
Assuming the inductive hypothesis, the algorithm correctly computes a**1, since

power(a,k + 1) = a-power (a, k) = a-a = a*1 .



